

SSL is a security protocol that was developed by Netscape Communications
Corporation, along with RSA Data Security, Inc. The primary goal of the SSL
protocol is to provide a private channel between communicating applications, which
ensures privacy of data, authentication of the partners and integrity.

SSL Overview
SSL provides an alternative to the standard TCP/IP socket API that has security
implemented within it. Hence, in theory it is possible to run any TCP/IP application
in a secure way without changing the application. In practice, SSL is only widely
implemented for HTTP connections, but Netscape Communications Corp. has
stated an intention to employ it for other application types, such as NNTP and
Telnet, and there are several such implementations freely available on the Internet.
IBM, for example, is using SSL to enhance security for TN3270 sessions in its Host
On-Demand and eNetwork Communications Server products.

SSL is composed of two layers:

� At the lower layer, a protocol for transferring data using a variety of predefined
cipher and authentication combinations, called the SSL Record Protocol.
Figure 202 on page 332 illustrates this, and contrasts it with a standard HTTP
socket connection. Note that this diagram shows SSL as providing a simple
socket interface, on which other applications can be layered. In reality, current
implementations have the socket interface embedded within the application and
do not expose an API that other applications can use.

Secure Sockets Layer (SSL)

� On the upper layer, a protocol for initial authentication and transfer of
encryption keys, called the SSL Handshake Protocol.

Client Server

 socket API socket API

Session

Standard HTTP

 socket API socket API

Client Server

 socket API socket API

Session

SSL

SSL Record Protocol

3376E\3376F4OS

Figure 202. SSL - Comparison of Standard and SSL Sessions

An SSL session is initiated as follows:

� On the client (browser) the user requests a document with a special URL that
commences https: instead of http:, either by typing it into the URL input field, or
by clicking on a link.

� The client code recognizes the SSL request and establishes a connection
through TCP port 443 to the SSL code on the server.

� The client then initiates the SSL handshake phase, using the SSL Record
Protocol as a carrier. At this point there is no encryption or integrity checking
built in to the connection.

The SSL protocol addresses the following security issues:

Privacy
After the symmetric key is established in the initial handshake, the messages
are encrypted using this key.

Integrity
Messages contain a message authentication code (MAC) ensuring the
message integrity.

Authentication
During the handshake, the client authenticates the server using an
asymmetric or public key. It can also be based on certificates.

SSL requires each message to be encrypted and decrypted and therefore has a
high performance and resource overhead.

Differences between SSL V2.0 and SSL V3.0
There is a backward compatibility between SSL V2.0 and SSL V3.0. An SSL V3.0
server implementation should be able accept the connection request from an SSL
V2.0 client. The main differences between SSL V2.0 and SSL V3.0 are as follows:

� SSL V2.0 does not support client authentication.
� SSL V3.0 supports more ciphering types in the CipherSpec.

SSL Protocol
The SSL protocol is located at the top of the transport layer. SSL is also a layered
protocol itself. It simply takes the data from the application layer, reformats it and
transmits it to the transport layer. SSL handles a message as follows:

Sender
Performs the following tasks:

� Takes the message from upper layer
� Fragments the data to manageable blocks
� Optionally compresses the data
� Applies a Message Authentication Code (MAC)
� Encrypts the data
� Transmits the result to the lower layer

Receiver
Performs the following tasks:

� Takes the data from lower layer
 � Decrypts
� Verifies the data with the negotiated MAC key
� Decompresses the data if compression was used
� Reassembles the message
� Transmits the message to the upper layer

An SSL session works in different states. These states are session and connection
states. The SSL handshake protocol (please see 5.7.2.2, “SSL Handshake
Protocol” on page 335) coordinates the states of the client and the server. In
addition, there are read and write states defined to coordinate the encryption
according to the change cipher spec messages.

When either party sends a change cipher spec message, it changes the pending
write state to current write state. Again, when either party receives a change cipher
spec message, it changes the pending read state to the current read state.

The session state includes the following components:

Session identifier
An arbitrary byte sequence chosen by the server to identify an active or
resumable session state.

Peer certificate
Certificate of the peer. This field is optional; it can be empty.

Compression method
The compression algorithm.

Cipher spec
Specifies data encryption algorithm (such as null, DES) and a MAC algorithm.

Master secret
48-byte shared secret between the client and the server.

Is resumable
A flag indicating whether the session can be used for new connections.

The connection state includes the following components:

Server and client random
An arbitrary byte sequence chosen by the client and server for each
connection.

Server write MAC secret
The secret used for MAC operations by the server.

Client write MAC secret
The secret used for MAC operations by the client.

Server write key
The cipher key for the server to encrypt the data and the client to decrypt the
data.

Client write key
The cipher key for the client to encrypt the data and the server to decrypt the
data.

Initialization vectors
Initialization vectors store the encryption information.

Sequence numbers
A sequence number indicates the number of the message transmitted since
the last change cipher spec message. Both the client and the server maintain
sequence numbers.

Change Cipher Spec Protocol
The change cipher spec protocol is responsible for sending change cipher spec
messages. At any time, the client can request to change current cryptographic
parameters such as handshake key exchange. Following the change cipher spec
notification, the client sends a handshake key exchange and if available, certificate
verify messages, and the server sends a change cipher spec message after
processing the key exchange message. After that, the newly agreed keys will be
used until the next change cipher spec request. The change cipher spec message
is sent after the hello messages during the negotiation.

SSL Handshake Protocol
The SSL Handshake Protocol allows the client and server to determine the required
parameters for an SSL connection such as protocol version, cryptographic
algorithms, optional client or server authentication, and public-key encryption
methods to generate shared secrets. During this process all handshake messages
are forwarded to the SSL Record Layer to be encapsulated into special SSL
messages. Figure 203 illustrates an SSL handshake process.

Client

1
Client Hello

3

(Certificate)
(Client Key Exchange)
(Certificate Verify)
Finished

Change Cipher Specs

Server

2

Server Hello
(Certificate)
(Server Key Exchange)
(Certificate Request)
Server Hello Done

4 Finished

Change Cipher Specs

5
Send Data Send Data

3376E\3376F4OR

Figure 203. SSL - Handshake Process

1. The client sends a connection request with a client hello message. This
message includes:

� Desired version number.
� Time information (the current time and date in standard UNIX 32-bit

format).
� Optionally session-ID. If it is not specified the server will try to resume

previous sessions or return an error message
� Cipher suites. (List of the cryptographic options supported by the client.

These are authentication modes, key exchange methods, encryptions and
MAC algorithms.)

� Compression methods supported by the client.
� A random value.

2. The server evaluates the parameters sent by the client hello message and
returns a server hello message that includes the following parameters which
were selected by the server to be used for the SSL session:

 � Version number
� Time information (the current time and date in standard UNIX 32-bit format)

 � Session ID
 � Cipher suite
 � Compression method
� A random value

Following the server hello message the server sends the following messages:

� Server certificate if the server is required to be authenticated
� A server key exchange message if there is no certificate available or the

certificate is for signing only
� A certificate request if the client is required to be authenticated

Finally, the server sends a server hello done message and begins to wait for
the client response.

3. The client sends the following messages:

� If the server has sent a certificate request, the client must send a certificate
or a no certificate message.

� If the server has sent a server key exchange message, the client sends a
client key exchange message based on the public key algorithm
determined with the hello messages.

� If the client has sent a certificate, the client verifies the server certificate
and sends a certificate verify message indicating the result.

The client then sends a finished message indicating the negotiation part is
completed. The client also sends a change cipher spec message to generate
shared secrets. It should be noted that this is not controlled by the handshake
protocol, the change cipher spec protocol manages this part of the operation.

4. The server sends a finished message indicating the negotiation part is
completed. The server then sends the change cipher spec message.

5. Finally the session partners separately generate an encryption key, the master
key from which they derive the keys to use in the encrypted session that
follows. The Handshake protocol changes the state to the connection state.
All data taken from the application layer is transmitted as special messages to
the other party.

There is significant additional overhead in starting up an SSL session compared
with a normal HTTP connection. The protocol avoids some of this overhead by
allowing the client and server to retain session key information and to resume that
session without negotiating and authenticating a second time.

Following the handshake, both session partners have generated a master key.
From that key they generate other session keys, which are used in the
symmetric-key encryption of the session data and in the creation of message
digests. The first message encrypted in this way is the finished message from the
server. If the client can interpret the finished message, it means:

� Privacy has been achieved, because the message is encrypted using a
symmetric-key bulk cipher (such as DES or RC4).

� The message integrity is assured, because it contains a Message
Authentication Code (MAC), which is a message digest of the message itself
plus material derived from the master key.

� The server has been authenticated, because it was able to derive the master
key from the pre-master key. As this was sent using the server's public key, it

could only have been decrypted by the server (using its private key). Note that
this relies on the integrity of the server's public key certificate.

SSL Record Protocol
Once the master key has been determined, the client and server can use it to
encrypt application data. The SSL record protocol specifies a format for these
messages. In general they include a message digest to ensure that they have not
been altered and the whole message is encrypted using a symmetric cipher.
Usually this uses the RC2 or RC4 algorithm, although DES, triple-DES and IDEA
are also supported by the specification.

The U.S. National Security Agency (NSA), a department of the United States
federal government imposes restrictions on the size of the encryption key that can
be used in software exported outside the U.S. These rules are currently under
review, but the present effect is to limit the key to an effective size of 56 bits. The
RC2 and RC4 algorithms achieve this by using a key in which all but 56 bits are set
to a fixed value. International (export) versions of software products have this
hobbled security built into them. SSL checks for mismatches between the export
and nonexport versions in the negotiation phase of the handshake. For example, if
a U.S. browser tries to connect with SSL to an export server, they will agree on
export-strength encryption. See 5.2.7, “Export/Import Restrictions on Cryptography”
on page 279 for more information on recent changes of U.S. export regulations of
cryptographic material.

Transport Layer Security (TLS)
The Transport Layer Security 1.0 protocol is based on SSL. At the time of writing,
the TLS 1.0 protocol is not a standard protocol. (Please refer to current TLS draft
document for more information about SSL.) There are not significant differences
between SSL 3.0 and TLS 1.0. They can interoperate with some modifications on
the message formats.

Secure Multipurpose Internet Mail Extension (S-MIME)
Secure Multipurpose Internet Mail Extension (S-MIME) can be thought of as a very
specific SSL-like protocol. S-MIME is an application-level security construct, but its
use is limited to protecting e-mail via encryption and digital signatures. It relies on
public key technology, and uses X.509 certificates to establish the identities of the
communicating parties. S-MIME can be implemented in the communicating end
systems; it is not used by intermediate routers or firewalls.

