

Internet Protocols and Applications

This chapter introduces some of the protocols and applications that have made the
task of using the Internet both easier and very popular over the past couple of
years. In fact, World Wide Web traffic, which is mostly HTTP, has outrun FTP as
using the most bandwidth of all protocols across the Internet. Modern computer
operating systems provide Web browser applications by default, some even provide
Web servers, thus making it ever easier for end users and businesses to explore
and exploit the vast capabilities of worldwide networked computing.

The World Wide Web (WWW)
The World Wide Web is a global hypertext system that was initially developed in
1989 by Tim Berners Lee at the European Laboratory for Particle Physics, CERN in
Switzerland to facilitate an easy way of sharing and editing research documents
among a geographically dispersed group of scientists.

In 1993 the Web started to grow rapidly which was mainly due to the National
Center for Supercomputing Applications (NCSA) developing a Web browser
program called Mosaic, an X Windows-based application. This application provided
the first graphical user interface to the Web and made browsing more convenient.

Today there are Web browsers and servers available for nearly all platforms. You
can get them either from an FTP site for free or buy a licensed copy. The rapid
growth in popularity of the Web is due to the flexible way people can navigate
through worldwide resources in the Internet and retrieve them.

The number of Web servers is also increasing rapidly and the traffic over port 80,
which is the well-known port for HTTP Web servers, on the NSF backbone has had
a phenomenal rate of growth too. The NSFNET, however, was converted back to a
private research network in 1995; therefore comprehensive statistics of backbone
traffic are not as easily available anymore, if they are at all.

Web Browsers
Generally, a browser is referred to as an application that provides access to a Web
server. Depending on the implementation, browser capabilities and hence
structures may vary. A Web browser, at a minimum, consists of an HTML
interpreter and HTTP client which is used to access HTML Web pages. Besides
this basic requirement, many browsers also support FTP, NNTP, e-mail (POP and
SMTP clients), among other features, with an easy-to-manage graphical interface.
Figure 251 on page 438 illustrates a basic Web browser structure.

Graphical
User

Interface

Driver

HTML
Interpreter

Optional
Interpreter

T
r
a
n
s
p
o
r
t

L
a
y
e
r

HTTP
Client

Mail
Client

FTP
Client

Controller
or

Dispatcher

3376E\3376F8O7

Figure 251. Structure of a Web Browser

As with many other Internet facilities, the Web uses a client/server processing
model. The Web browser is the client component. Examples of Web browsers
include Mosaic, Netscape Navigator, Microsoft Internet Explorer, or Sun HotJava
browser. Web browsers are responsible for formatting and displaying information,
interacting with the user, and invoking external functions, such as telnet, or external
viewers for data types that Web browsers do not directly support. Web browsers
have become the "universal client" for the GUI workstation environment, in much
the same way that the ability to emulate popular terminals such as the DEC VT100
or IBM 3270 allows connectivity and access to character-based applications on a
wide variety of computers. Web browsers are widely available for all popular GUI
workstation platforms and are inexpensive.

Web Servers
Web servers are responsible for servicing requests for information from Web
browsers. The information can be a file retrieved from the server's local disk, or it
can be generated by a program called by the server to perform a specific
application function.

There are a number of public-domain Web servers available for a variety of
platforms including most UNIX variants, as well as personal computer environments
such as OS/2 Warp and Windows NT. Some well-known public domain servers are
CERN, NCSA httpd, and Apache servers.

IBM has released the Domino Go Webserver, a scalable, high-performance Web
server that is available on OS/390 as Version 5 (including WebSphere Application
Server as described in 8.6.4.2, “IBM Web Application Servers” on page 458).
Domino Go Webserver V4.6.2.5 is available on many workstation platforms (AIX,
Solaris, HP-UX, OS/2 Warp, Windows NT, and Windows 95). Both versions
provide state-of-the-art security, site indexing capabilities, advanced server statistics
reporting, PICS support, and relational database connectivity with Net.Data (see
8.6.4.1, “IBM Web Connectors” on page 457). Domino Go Webserver is the
successor to IBM's well-known Internet Connection Secure Server (ICSS), and it is
a Java-enabled Web server that supports the development and running of servlets
(see 8.5, “Java” on page 449).

Web Server Application Technologies
As mentioned earlier, Web server can serve static (mere HTML pages) or dynamic
(generated by a program upon invocation) content. This section discusses some
commonly used technologies used to provide dynamic content and to facilitate
interaction between a Web server and an application server that is not directly
accessible to a client (Web browser).

Common Gateway Interface (CGI)
The Common Gateway Interface (CGI) is a means of allowing a Web server to
execute a program that is provided by the Web server administrator, rather than
retrieving a file. CGI programs allow a Web server to generate a dynamic
response, usually based on the client's input. A number of popular Web servers
support the CGI, and a variety of programming languages can be used to develop
programs that interface with CGI. Unless using PERL, however, CGI programs are
not easily portable across platforms.

Server-Specific APIs
Some Web servers offer specific APIs that allow developers to create programs
that can be invoked for special purposes upon certain events. Those APIs are
usually quite powerful but offer no portability across Web server platforms. The
most popular server-specific APIs are Netscape Server API (NSAPI) and Microsoft
Internet Information Server API (ISAPI).

Servlets
Based on Java, this technology allows the invocation of a Java program in the
server's memory. This method is usually very portable across platforms and incurs
little processing overhead. See 8.5, “Java” on page 449 for more details.

Server-Side Includes (SSI)
This is a technology that a Java-enabled Web server (meaning, a Web server with
a servlet engine) can use to convert a section of an HTML file into an alternative
dynamic portion each time the document is sent to the client's browser. This
dynamic portion invokes an appropriate servlet and passes to it the parameters it
needs. The replacement is performed at the server and it is completely transparent
to the client. Pages that use this technology have the extension .shtml instead of
.html (or .htm).

Java Server Pages (JSP)
This is an easy-to-use solution for generating HTML pages with dynamic content.
A JSP file contains combinations of HTML tags, NCSA tags (special tags that were
the first method of implementing server-side includes), <SERVLET> tags, and JSP
syntax. JSP files have the extension .jsp. One of the many advantages of JSP is
that it enables programmers to effectively separate the HTML coding from the
business logic in Web pages. JSP can be used to access reusable components,
such as servlets, JavaBeans, and Java-based Web applications. JSP also
supports embedding inline Java code within Web pages.

Hypertext Transfer Protocol (HTTP)
HTTP 1.1 is a proposed standard protocol. Its status is elective. It is described in
RFC 2068. The older HTTP 1.0 is an informational protocol and described in RFC
1945.

The hypertext transfer protocol is a protocol designed to allow the transfer of
hypertext markup language (HTML) documents (please see 8.3, “Hypertext Markup
Language (HTML)” on page 448). HTML is a tag language used to create
hypertext documents. Hypertext documents include links to other documents that
contain additional information about the highlighted term or subject. Such
documents may contain other elements apart from text, such as graphic images,
audio and video clips, Java applets, and even virtual reality worlds (which are
described in VRML, a scripting language for that kind of elements). See 8.3,
“Hypertext Markup Language (HTML)” on page 448 for more information on HTML.

Overview of HTTP
HTTP is based on request-response activity. A client, running an application called
a browser, establishes a connection with a server and sends a request to the
server in the form of a request method. The server responds with a status line,
including the message's protocol version and a success or error code, followed by
a message containing server information, entity information and possible body
content.

An HTTP transaction is divided into four steps:

1. The browser opens a connection.
2. The browser sends a request to the server.
3. The server sends a response to the browser.
4. The connection is closed.

On the Internet, HTTP communication generally takes place over TCP connections.
The default port is TCP 80, but other ports can be used. This does not preclude
HTTP from being implemented on top of any other protocol on the Internet, or on

other networks. HTTP only presumes a reliable transport; any protocol that provides
such guarantees can be used.

Except for experimental applications, current practice requires that the connection
be established by the client prior to each request and closed by the server after
sending the response. Both clients and servers should be aware that either party
may close the connection prematurely, due to user action, automated timeout, or
program failure, and should handle such closing in a predictable fashion. In any
case, the closing of the connection by either or both parties always terminates the
current request, regardless of its status.

In simple terms, HTTP is a stateless protocol because it keeps no track of the
connections. To load a page including two graphics for example, a graphic-enabled
browser will open three TCP connections: one for the page, and two for the
graphics. Most browsers, however, are able to handle several of these connections
simultaneously.

This behavior can be rather resource-intensive if one page consists of a lot of
elements as quite a number of Web pages nowadays do. HTTP 1.1, as defined in
RFC 2068, alleviates this problem to the extent that one TCP connection will be
established per type of element on a page, and all elements of that kind will be
transferred over the same connection respectively.

However, if a request depends on the information exchanged during a previous
connection, then this information has to be kept outside the protocol. One way of
tracking such persistent information is the use of cookies. A cookie is a set of
information that is exchanged between a client Web browser and a Web server
during an HTTP transaction. The maximum size of a cookie is 4 KB. All these
pieces of information, or cookies, are then stored in one single file and placed in
the directory of the Web browser. If cookies are disabled, that file is automatically
deleted. A cookie can be retrieved and checked by the server at any subsequent
connection. Because cookies are regarded as a potential privacy exposure, a Web
browser should allow the user to decide whether to accept cookies or not and from
which servers. While cookies merely serve the purpose of keeping some kind of
state for HTTP connections, secure client and server authentication is provided by
the Secure Sockets Layer (SSL) which is described in 5.7, “Secure Sockets Layer
(SSL)” on page 331.

HTTP Operation
In most cases, the HTTP communication is initiated by the user agent requesting a
resource on the origin server. In simplest case, the connection is established via a
single connection between the user agent and the origin server as shown in
Figure 252.

Request

User Agent Origin Server

Response

3376E\3376F8O2

Figure 252. HTTP - Single Client/Server Connection

In some cases, there is no direct connection between the user agent and the origin
server. There are one or more intermediaries between the user agent and origin
server such as a proxy, gateway, or tunnel. Requests and responses are
evaluated by the intermediaries and forwarded to the destination or another
intermediary in the request-response chain as shown in Figure 253.

Request

User Agent Origin ServerA B C

Response

3376E\3376F8O3

Figure 253. HTTP - Client/Server Connection with Intermediaries Between

As described in 5.3.4, “Application Level Gateway (Proxy)” on page 284, a proxy
can handle the content of the data and therefore modify the data accordingly.
When a request comes to a proxy, it rewrites all or part of the message and
forwards the message to the next destination. A gateway receives the message
and sends the message to the underlying protocols with an appropriate format. A
tunnel does not deal with the content of the message, therefore it simply forwards
the message as it is.

Proxies and gateways in general can handle caching of HTTP messages. This can
dramatically reduce the response time and IP traffic on the network. Since tunnels
cannot understand the message content they cannot store cached data of HTTP
messages. In the previous figure (Figure 253), if one of the intermediaries (A,B
and C) employs an internal cache for HTTP messages, the user agent can get
response from the intermediary if it is previously cached from the origin server in
the response chain. The following figure (Figure 254) illustrates that A has a
cached copy of an earlier response from the origin server in the response chain.
Hence, if the server response for the request is not already cached in the user
agent's internal cache, it can directly be obtained from A.

Request

User Agent Origin ServerA B C

Response

3376E\3376F8O4

Figure 254. HTTP - Cached Server Response

Caching is not applicable to all server responses. Caching behavior can be
modified by special requests to determine which server responses can or cannot be
cached. For this purpose, server responses can be marked as non-cachable,
public or private (cannot be cached in a public cache). Cache behavior and
cachable responses are discussed in 8.2.2.11, “HTTP Caching” on page 447.

Protocol Parameters
Some of the HTTP protocol parameters are given below. Please refer to RFC 2068
for the full list and details:

HTTP Version
HTTP uses a <major>.<minor> numbering scheme to indicate the versions of
the protocol. The further connection will be performed according to the
protocol versioning policy. The <major> number is incremented when there
are significant changes in protocol such as changing a message format. The
<minor> number is incremented when the changes does not effect the
message format.

The version of HTTP messages is sent by an HTTP-Version field in the first
line of the message. The HTTP-Version field is in the following format.
(Please refer to RFC 822 for augmented Backus-Naur Form.)

 HTTP-Version = "HTTP" "/" 1\DIGIT "." 1\DIGIT

Uniform Resource Identifiers (URI)
Uniform Resource Identifiers are generally refer to as WWW addresses and
combination of Uniform Resource Locators (URL) and Uniform Resource
Names (URN). In fact, URIs are strings that indicate the location and name
of the source on the server. Please see RFC 2068 and 2396 for more detail
about the URI and URL syntax.

HTTP URL
The HTTP URL scheme allows you to locate network resources via
HTTP protocol. It is based on the URI Generic Syntax and described in
RFC 2396. The general syntax of a URL scheme is shown below:

HTTP_URL = "http" "//" host [":" port] [abs_path]

The port number is optional. If it is not specified, the default value is 80.

HTTP Message
HTTP messages consist of the following fields:

Message Types
A HTTP message can be either a client request or a server response. The
following string indicates the HTTP message type:

HTTP-message = Request | Response

Message Headers
HTTP message header field can be one of the following:

 � General header
 � Request header
 � Response header
 � Entity header

Message Body
Message body can be referred to as entity body if there is no transfer coding
has been applied. Message body simply carries the entity body of the
relevant request or response.

Message Length
Message length indicates the length of the message body if it is included.
The message length is determined according to the criteria that is described
in RFC 2068 in detail.

General Header Fields
General header fields can apply both request and response messages.
Currently defined general header field options are as follows:

 � Cache-Control
 � Connection
 � Date
 � Pragma
 � Transfer-Encoding
 � Upgrade
 � Via

Request
A request messages from a client to a server includes the method to be applied to
the resource, the identifier of the source, and the protocol version in use. A
request message field is as follows:

Request = Request-Line

\(general-header | request-header | entity-header)

 CRLF

[message-body]

Please refer to RFC 2068 for detailed information.

Response
HTTP server returns a response after evaluating the client request. A response
message field is as follows:

Request = Request-Line

\(general-header | request-header | entity-header)

 CRLF

[message-body]

Please refer to RFC 2068 for detailed information.

Entity
Either the client or server might send Entity in the request message or response
message unless otherwise indicated. Entity consists of the following:

� Entity header fields

 � Entity body

Connections
A significant difference between HTTP 1.1 and earlier versions of HTTP is that
HTTP 1.1 uses persistent connection as default. In other words, the server
maintains a persistent connection. In earlier version implementations, a separate
TCP connection is established for each URL and clients have to make multiple
requests for images and associated data on the same URL. This approach was
causing congestion and performance problems on the network. Persistent HTTP
connections have a number of advantages.

Method Definitions
Currently defined methods are as follows:

Safe and Idempotent Methods
Methods considered not to cause side effects are referred to as safe..
Idempotent methods are GET, HEAD, PUT and DELETE.

OPTIONS
This method allows the client to determine the options or requirements
associated with a source or capabilities of a server, without any resource
retrieval.

GET
This method allows the client to retrieve the data which was determined by
the request URI.

HEAD
This method allows the client to retrieve metainformation about the entity
which does not require you to transfer the entity body.

POST
The post function is determined by the server.

PUT This method is similar to the post method with one important difference which
is the URI in post request identifies the resource that will handle enclosed
entity.

DELETE
This methods requests that the server delete the source determined by the
request URI.

TRACE
Trace method allows the client to see how the message was retrieved at the
other side for testing and diagnostic purposes.

Status Code Definitions
The status code definitions are as follows:

Informational (1xx)
Informational status codes indicate a provisional response. Currently defined
codes are as follows:

 � 100 Continue
� 101 Switching Protocols

Successful (2xx)
This class of codes indicates that a particular request was successfully
received, understood and accepted. Currently defined codes are as follows:

 � 200 OK
 � 201 Created
 � 202 Accepted
� 203 Non-Authoritative Information
� 204 No Content
� 205 Reset Content
� 206 Partial Content

Redirection (3xx)
This class of codes indicates that an action is required from the user agent in
order to complete the request. Currently defined codes are as follows:

� 300 Multiple Choices
� 301 Moved Permanently
� 302 Moved Temporarily
� 303 See Other
� 304 Not Modified
� 305 Use Proxy

Client Error (4xx)
This class of codes indicates client errors. Currently defined codes are as
follows:

� 400 Bad Request
 � 401 Unauthorized
� 402 Payment Required

 � 403 Forbidden
� 404 Not Found
� 405 Method Not Allowed
� 406 Not Acceptable
� 407 Proxy Authentication Required
� 408 Request Timeout

 � 409 Conflict
 � 410 Gone
� 411 Length Required
� 412 Precondition Failed
� 413 Request Entity Too Large
� 414 Request-URI Too Long
� 415 Unsupported Media Type

Server Error (5xx)
This class of codes indicate client errors. Currently defined codes are as
follows:

� 500 Internal Server Error
� 501 Not Implemented
� 502 Bad Gateway
� 503 Service Unavailable
� 504 Gateway Timeout
� 505 HTTP Version Not Supported

Access Authentication
HTTP provides an authentication mechanism to allow servers to define access
permissions on resources and clients to use these resources. The authentication
method can be one of the following:

Basic Authentication Scheme
Basic authentication is based on user IDs and passwords. In this
authentication scheme, the server will permit the connection if only the user
ID and password are validated. In basic authentication, user IDs and
passwords are not encrypted. They are encoded in base64 format (see
4.8.3.5, “Base64 Encoding” on page 204).

Digest Authentication Scheme
Digest authentication scheme is an extension to HTTP and described in RFC
2069. In this authentication scheme, the user ID and a digest containing an
encrypted form of the password are sent to the server. The server computes
a similar digest and grants access to the protected resources if the two
digests are equal. Notice that if the digest authentication is enabled, what is

sent over the network is not simply an encrypted form of the password, which
could be decrypted if one had the correct key, but is a one-hash value of the
password, which cannot be decrypted. So digest authentication provides a
higher level of security than the base-64 encoded password. Unfortunately,
digest authentication is not yet supported by all browsers.

Content Negotiation
In order to find the best handling for different types of data, the correct
representation for a particular entity body should be negotiated. Actually, the user
might handle this by himself or herself but this sometimes is not the best way of
representation. There are three types of negotiation:

Server-Driven Negotiation
The representation for a response is determined according to the algorithms
located at the server.

Agent-Driven Negotiation
If the representation for a response is determined according to the algorithms
located.

Transparent Negotiation
This is a combination of both server-driven and agent-driven negotiation. It is
accomplished by a cache that includes a list of all available representations.

HTTP Caching
One of the most important features of HTTP is caching capability. Since HTTP is
distributed information-based protocol, caching can improve the performance
significantly. There are number of functions that came with the HTTP 1.1 protocol
to use caching efficiently and properly.

In most cases, client requests and server responses can be stored in a cache
within a reasonable amount of time, to handle the corresponding future requests. If
the response is in the cache and accurate, there is no need to request another
response from the server. This approach not only reduces the network bandwidth
requirement but also increases the speed. There is a mechanism that the server
estimates a minimum time in which the response message will be valid. That
means, an expiration time is determined by the server for that particular response
message. Therefore, within this time the message can be used without referring to
the server.

Consider that this time is exceeded and there is a need for that response message.
The data inside the message might have been changed or not after the expiration
date. To be able to ensure whether the data is changed or not, a validation
mechanism is defined as follows:

Expiration Mechanism
In order to decide whether the data is fresh or not, an expiration time should
be determined. In most cases, the origin server explicitly defines the
expiration time for a particular response message within that message. If this
is the case, the cached data can be used to send from cache for subsequent
requests within the expiration time.

If the origin server did not define any expiration time, there are some methods
to estimate/calculate a reasonable expiration time (such as the Last-Modified
time). Since this is not originated from the server, they should be used
cautiously.

Validation Mechanism
When the expiration time is exceeded, there is a possibility that the data is
stale. In order to ensure the validation of the response message, the cache
has to check with the origin server (or possibly an intermediate cache with a
fresh response) whether the response message is still usable. HTTP 1.1
provides conditional methods for this purpose.

When an origin server sends a full response, it attaches some sort of validator
to the message. This will then be used as a cache validator by the user
agent or the proxy cache. The client (user agent or the proxy cache)
generates a conditional request with a cache validator attached to it. The
server then evaluates the message and responds with a special code
(usually, 304 (Not Modified)) and no entity body. Otherwise, the server sends
the full response (including the entity body). This approach avoids an extra
round-trip if the validator does not match and also avoids sending the full
response if the validator matches.

Please refer to RFC 2068 for more details about HTTP caching.

Hypertext Markup Language (HTML)
HTML is one of the major attractions of the Web. It has an architected set of tags
that should be understood by all Web browsers and Web servers, although as new
features are added to HTML, they may not be supported by older Web browsers.
These tags are device independent. The same document can be sent from a
personal computer, an AIX or UNIX machine, or a mainframe, and the Web
browser on any client machine can understand the HTML tags and build the data
stream to display it on the target device. HTML tags describe basic elements of a
Web document, such as headers, paragraphs, text styles, and lists. There are also
more sophisticated tags to create tables and to include interactive elements, such
as forms, scripts or Java applets.

Once document writers and programmers have mastered HTML, those skills are
applicable to any operating system on any machine, provided that it has a Web
browser.

Since HTML supports hypertext, it allows document writers to include links to other
HTML documents. Those documents might be on the same machine as the
original, or they might be on a machine on another network on the other side of the
world; such is the power of HTML links.

The Extensible Markup Language (XML)
The Extensible Markup Language (XML) describes a class of data objects called
XML documents which are stored on computers, and partially describes the
behavior of programs that process these objects. XML is an application profile or
restricted form of SGML. The goal of XML is to enable generic SGML to be
served, received, and processed on the Web in the way that is now possible with
HTML. XML has been designed for ease of implementation and for interoperability
with both SGML and HTML.

